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ABSTRACT 
 
The proof of Beal equation mystery has been published in this journal vide Vol-4 of Aug-edition, 2013. Subsequent 
developments of the original theory were published in October & November editions. Due to phase-wise 
developments the overall true picture of Beal equation mystery was not reflected in the first manuscript. Now the 
picture is crystal clear and for the ease of apprehension I feel an urge to prepare a fresh manuscript consisting all 
the topics of three editions and incorporating them in a proper order and eliminating some insignificant/irrelevant 
topics. 
This paper contains the same proof of Beal Equation Mystery i.e. without common factor among all the bases a Beal 
equation cannot exist and then the theory behind the formation of Beal Equation. It is, as I believe more scientific, 
more easy to understand and more presentable. 
 
Keywords 
 
Beal equation,  N-equation & NZ-equation, Nd operation & Ns operation, Mixed Zygote form & odd Zygote form,  
  
1. Introduction 
 
ax + by = cz, where a, b, c, x, y, z all are of positive integers & x, y, z > 2 is known as Beal Equation . 
If this Beal Equation exists there must be a common factor among all the bases a, b, c e.g. 23 + 23 = 24,  
76 + 77 = 983, 194 + 383 = 573 etc. 
  
The proof of this mystery is still unknown to all mathematical communities. I believe that I have been able to give a 
proof in favor of this mystery. 
 
The proof is mainly based on the properties of Pythagorean equation a2 + b2 = c2 where a, b, c are of positive 
integers without any common factor among them.  
 
The proof clearly shows that only one element of a, b, c can produce powers beyond two like 3, 4, 5, 6, ….. so as to 
receive three types of equations an + b2 = c2 or a2 + b2n = c2 or a2 + b2 = cn under N-equation barring some cases 
where two elements can also produce power such as 1 + 23 = 32, 72 + 25 = 34etc. which fall under NZ-equation. 
 
For N-equation the LH odd element produces power by Nd operation among mixed zygote expressions i.e. mixed 
with odd & even elements. 
LH even element produces power by Nd operation among odd zygote expressions i.e. mixed with only odd elements. 
RH odd element produces power by Ns operation among mixed zygote expressions. 
Any two of these three operations or all the three are not possible to run simultaneously.  
So in N-equation only one element can raise its power beyond two. But in NZ-equation two elements can produce 
power. 
 
Apart from the proof that without common factor among the bases a Beal Eq. cannot exist, it also shows how Beal 
equations are formed and there cannot be any common factor among the exponents of Beal Equation.  
 
2. Natural Equation or simply N-equation. 
 
a2 + b2 = c2 where the elements a,b,c all are of positive integers is said to be Natural equation provided its 
comparable equation i.e. (α2 – β2)2 + (2αβ)2 = (α2 + β2)2 …………. Eq(A) has the property that α, β must be of 
positive integers. (a, b, c) is said to be a prime set when there is no common factor among a, b, c & said to be 
composite set when there lies a common factor. 
Now from the property (aµ)2 + (bµ)2 = (cµ)2 we can say that any prime set (a,b,c) can produce infinite number of 
composite sets (aµ,bµ,cµ) where µ is any positive integer. But our concerned area is only for prime sets. 
Now a2 + b2 = c2 can be of three types 
i)     (e1)2 + (e2)2 = (e3)2          ii)     (o1)2 + (o2)2 = (o3)2      iii)      (o1)2 + (e1)2 = (o2)2 
where e & o denote even and odd numbers respectively. 
Case i) cannot be accepted as it is a composite set. 
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Case ii) cannot be accepted as (o1)2 + (o2)2 = (2x – 1)2 + (2y – 1)2 = 2(2x2 + 2y2 – 2x – 2y + 1) =  
2(an odd number) where x, y are positive integers, which cannot be a square quantity. 
Case iii) is accepted and these can be of two kinds. 
 
3.  Natural equation of 1st kind and 2nd kind. 
 
To maintain the ascending order i.e. a < b < c, 1st kind is defined as odd < even < odd 
⇒ 2αβ > α2 – β2 ⇒ (α/β) < √2 + 1 and 2nd kind is just its reverse.  
From Eq.(A), it is obvious α, β are the combination of odd and even. 
For 1st kind c – b = (α – β)2 = (an odd no.)2 = k say, where k can be said as natural constant.  
Also c – a = 2β2 = 2(an integer)2  
Similarly for 2nd kind k = c – b = 2(an integer)2 & c – a = (an odd no.)2. 
 
3.1.  Natural equation of 1st kind in functional form. 
 
Here, [b + (2x – 1)2 – 2y2]2 + b2 = [b + (2x – 1)2]2   
where, 2y2 is just greater than (2x – 1)2 by an integer value. 
or,   b2 – b.4y2 + 4y4 – 4y2(2x – 1)2 = 0   or, b = 2y2 ± 2y(2x – 1)  
or,   b = 2y2 + 4xy – 2y, neglecting (-) sign. 
∴ a = 4x2 + 4xy – 4x –2y + 1  &  c = 4x2 + 2y2 + 4xy – 4x – 2y + 1 
∴ leading functional set (a,b,c) = [Lfk(x), Lφk(x), Lψk(x)] =  
          [4x2 + 4xy – 4x - 2y + 1, 2y2 + 4xy –2y, 4x2 + 2y2 + 4xy – 4x – 2y + 1] 
∴for k = 1, put x = 1 & y = 1, to get the leading prime set (3,4,5) 
   for k = 9, put x = 2 & y = 3, to get the leading set (27,36,45) 
   for k = 25, put x = 3 & y = 4, to get the leading set (65,72,97) 
   for k = 49, put x = 4 & y = 5, to get the leading set (119,120,169) & so on 
 
For a particular value of k we can change the functional expression so as to start the variable with one. 
Say for k = 9 i.e. for x = 2, y starts from 3 i.e. (6y + 9)2 + (2y2 + 6y)2 = (2y2 + 6y + 9)2 where y ≥ 3 
As ‘a’ is always linear & b, c are always quadratic expressions, say a = Ax + B & b = Cx2 + Dx + E 
Obtain first three sets by putting y = 3, 4, 5 & they are (27, 36, 45), (33, 56, 65) & (39, 80, 89) 
For x = 1, A + B = 27 & C + D + E = 36 
For x = 2, 2A + B = 33 & 4C + 2D + E = 56 
For x = 3, 9C + 3D + E = 80 
Solving them we get (6x + 21)2 + (2x2 + 14x + 20)2 = (2x2 + 14x + 29)2 where x = 1,2,3, …….. 
 
3.2.   Natural equation of 2nd kind in functional form. 
 
Here, k = 2x2,∴ (b + 2x2 – y2)2 + b2 = (b + 2x2)2 where, y is an odd number so that y2 is just greater than 2x2 by an 
integer value. 
∴ b2 – 2by2 + (y2 – 4x2)y2 = 0  or, b = y2 ± y√(y2 – y2 + 4x2). Neglect (-)sign. 
∴ b = y2 + 2xy, a = y2 + 2xy + 2x2 – y2 = 2x2 + 2xy & c = y2 + 2xy + 2x2 
∴ leading functional set (a,b,c) = [Lfk(x), Lφk(x), Lψk(x)] = [2x2 + 2xy, y2 + 2xy, y2 + 2xy + 2x2] 
∴ for k = 2,  put x = 1, y = 3 to get the leading prime set (8,15,17) 
    for k = 8,  put x = 2, y = 3 to get the leading set (20,21,29) 
    for k = 18,  put x = 3, y = 5 to get the leading set (48,55,73) 
    for k = 32, put x = 4, y = 7 to get the leading set (88,105,137) & so on. 
 
Here also, For a particular value of k we can change the functional expression so as to start the variable with one. 
Followings are the few examples of N-equation in functional form. 
 
 
1st kind.    For k = 1,   (2x + 1)2 + (2x2 + 2x)2 = (2x2 + 2x + 1)2 
                 For k = 9,   (6x + 21)2 + (2x2 + 14x + 20)2 = (2x2 + 14x + 29)2 
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                 For k = 25,  (10x + 55)2 + (2x2 + 22x + 48)2 = (2x2 + 22x + 73)2 
                 For k = 49,  (14x + 105)2 + (2x2 + 30x + 88)2 = (2x2 + 30x + 137)2 
………………………………………………………………………………... 
2nd kind.   For k = 2,   (4x + 4)2 + (4x2 + 8x + 3)2 = (4x2 + 8x + 5)2 
                 For k = 8,   (8x + 12)2 + (4x2 + 12x + 5)2 = (4x2 + 12x + 13)2 
                 For k = 18,   (12x + 36)2 + (4x2 + 24x + 27)2 = (4x2 + 24x + 45)2 

                 For k = 32,   (16x + 72)2 + (4x2 + 36x + 65)2 = (4x2 + 36x + 97)2 
………………………………………………………………………………. 
  
Note:  
For k=1&2, it will produce only prime sets, but in other cases some composite sets will appear intermittently as 
because the nature of ‘k’in the relation (aµ)2 + (bµ)2 = (cµ)2, where µ = (an odd no,)2 remains unaltered. In general, 
For k = 2n where n = 0,1,3,5,……., N-Eq  produces only prime sets.    
 
 Coefficients of x2 for 1st kind & 2nd kind are respectively 2&4. If it is taken into consideration then with the help of 
first two leading sets we can find out the functional sets of all leading sets. To obtain the first two leading sets we 
can adopt the following two simple methods. 
  
Say, k = 25 = 52. Now, if the leading set be (a,b,c) then c = b + 25,  
 a = c – 2.42 [ as 2.42 is just greater than 52]   ∴ a = b – 7. 
∴(b – 7)2 + b2 = (b + 25)2   or, b = 72.  ∴ 1st set is (65,72,97). 
Similarly, for the 2nd set a = c – 2.52. [obviously, it will be a composite set]  
∴ (b – 25)2 + b2 = (b + 25)2.  or, b = 100.  ∴ 2nd set is (75,100,125). 
 
Say, k = 18.  ∴ k = 2.32. 
Now, if the leading set be (a,b,c), then c = b + 18, a = c – 52 = b – 7. 
∴ (b –7)2 + b2 = (b+18)2  or, b = 55 ∴ a = 48 & c = 73 & 1st set is (48,55,73) 
Similarly, for the 2nd set a = c – 72.  ∴(b – 31)2 + b2 = (b + 18)2  or, b = 91 
∴ a = 60 & c = 109  ∴ 2nd set is (60,91,109). 
 
4.   Natural equation in Mixed Zygote form.  
 
In Mixed Zygote form, a N-equation can be written as,   
  
1st kind 
 
{(y+2x-1)2 – (y)2}2 + {2.y.(y+2x-1)}2 = {(y+2x-1)2 + (y)2}2  [ as leading set] 
or, [{f(x,y)}2 – {φ(y)}2]2 + [2.f(x,y).φ(y)]2 =  [{f(x,y)}2 + {φ(y)}2]2 
where, for a particular value of k, {f(x,y) - φ(y)} is constant. 
 
2nd kind 
 
{2.x.(x+y)}2 + {(x+y)2 – (x)2}2 ={(x+y)2 + (x)2}2 . [as leading set] 
or, [2.f(x,y).φ(x)]2  + [{f(x,y)}2 – {φ(x)}2]2 = [{f(x,y)}2 + {φ(x)}2]2 .  
where, for a particular value of k, {φ(x)} is constant. 
 
4.1.   Example Chart of N-equation in Zygote form. 
 
1st kind     for k = 1,      (22 – 12)2 + (2.2.1)2 = (22 + 12)2. 
                                       (32 – 22)2 + (2.3.2)2 = (32 + 22)2. 
                                       (42 – 32)2 + (2.4.3)2 = (42 + 32)2. 
                                      ………………………………… 
 
                  for k = 9,      (62 – 32)2 + (2.6.3)2 = (62 + 32)2. 
                                       (72 – 42)2 + (2.7.4)2 = (72 + 42)2. 
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                                       (82 – 52)2 + (2.8.5)2 = (82 + 52)2. 
                                      ………………………………… 
                 for k = 25,     (92 – 42)2 + (2.9.4)2 = (92 + 42)2. 
                                       (102 – 52)2 + (2.10.5)2 = (102 + 52)2. 
                                       (112 – 62)2 + (2.11.6)2 = (112 + 62)2. 
                                      ………………………………… 
2nd kind     for k = 2,      (2.4.1)2 + (42 – 12)2 = (42 + 12)2. 
                                       (2.6.1)2 + (62 – 12)2 = (62 + 12)2. 
                                       (2.8.1)2 + (82 – 12)2 = (82 + 12)2. 
                                      ………………………………… 
                  for k = 8,      (2.5.2)2 + (52 – 22)2 = (52 + 22)2. 
                                       (2.7.2)2 + (72 – 22)2 = (72 + 22)2. 
                                       (2.9.2)2 + (92 – 22)2 = (92 + 22)2. 
                                      ………………………………… 
                 for k = 18,     (2.8.3)2 + (82 – 32)2 = (82 + 32)2. 
                                       (2.10.3)2 + (102 – 32)2 = (102 + 32)2. 
                                       (2.12.3)2 + (122 – 32)2 = (122 + 32)2. 
                                      ………………………………… 
 
5.  Two important operations. 
 
5.1  Ns operation 
                                                                                                               
Ns operation is defined as (a1

2 + b1
2)(a2

2 + b2
2) = (a1b2 ± a2b1)2 + (a1a2 – /+ b1b2)2  

e.g. 65 = 5.13 = (22 + 12)(22 + 32) = (2.3 ± 2.1)2 + (2.2 –/+ 3.1)2 = 82 + 12 or, 42 + 72. 
 
5.2  Nd operation 
 
Nd operation is defined as (a1

2 – b1
2)(a2

2 –  b2
2) = (a1a2 ± b1b2)2 – (a1b2 ± a2b1)2  

e.g. 35 = 5.7 = (32 – 22)(42 – 32) = (3.4 ± 2.3)2 – (3.3 ± 4.2)2 = 182 – 172 or, 62 – 12. 
 
 
6.   Power Characteristics of three elements of a N-equation a2 + b2 = c2. 
 
Here we consider a is L H odd element, b is L H even element & c is R H odd element. 
Its comparable equation is (α2 – β2)2 + (2αβ)2 = (α2 + β2)2 …………. Eq(A) 
Here α, β can be said as its mixed zygote elements. (α2 – β2) & (α2 + β2) can be said as mixed zygote expressions 
which are conjugate to each other.  
 
6.1  How the element ‘a’ produces power 
 
a produces power from 2 to 3 by virtue of Nd operation in between (α2 –  β2) & (α2 –  β2)2 
i.e. (α2 – β2) & {(α2 + β2)2 – (2αβ)2} on multiplication we get  
{(α3 + αβ2) ± (2αβ2)}2 – {(2α2β) ± (α2β + β3)}2  
⇒ (α3 + 3αβ2)2 – (3α2β + β3)2 or, {α(α2 – β2)}2 – {β(α2 – β2)}2 2nd one can be neglected as it is a composite set. 
⇒ (α2 – β2)3 = (α3 + 3αβ2)2 – (3α2β + β3)2   
Again by repetitive multiplication of (α2 – β2) on both sides we get 
 
(α2 – β2)n + { nc1αn – 1β + nc3αn – 3β3 + …..  }2 = {αn + nc2αn – 2 β2 + …..}2         .....…(B) 
 
Note:  for n = odd integer it will always produce a relation like a2n + 1 + b2 = c2 where b is odd & c is even provided 
zygote expression of ‘a’ is in the form of (even)2 – (odd)2  
 
6.2  How the element ‘c’ produces power 
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c produces power from 2 to 3 by virtue of Ns operation in between (α2 + β2) & (α2 + β2)2 
i.e. (α2 + β2) & {(α2 – β2)2 + (2αβ)2} on multiplication we get  
{(2α2β) ± (α2β – β3)}2 + {(α3 – αβ2) –/+ (2αβ2)}2   
⇒ (3α2β – β3)2 + (α3 – 3αβ2)2 or, {β(α2 + β2)}2 + {α(α2 + β2)}2 2nd one can be neglected as it is a composite set. 
⇒ (α2 + β2)3 = (3α2β – β3)2 + (α3 – 3αβ2)2 
Again by repetitive multiplication of (α2 + β2) on both sides we get 
{αn – nc2αn – 2 β2 + …..}2 + { nc1αn – 1β – nc3αn – 3β3 + …….  }2 = (α2 + β2)n      ……..(C) 
 
6.3  How the element ‘b’ produces power 
     
Earlier we discussed the Mixed Zygote form of N-equation. Let us now introduce another form i.e. ‘Odd zygote 
form’ of N-equation. 
We have c + b = d1

2 & c – b = d2
2.     ∴ c = (d1

2 + d2
2)/2  &  b = (d1

2 – d2
2)/2   

& a = √(c2 – b2) = √{(c + b)(c – b)} = d1d2.     
 
⇒ {(d1

2 – d2
2)/2}2 + (d1d2)2 = {(d1

2 + d2
2)/2}2  Here, d1 & d2 both are odd. 

 
The example chart can be given below. 
 
1st kind 
 
For k = 1,          (1.3)2 + {(32 – 12)/2}2  = {(32 + 12)/2}2   
                          (1.5)2 + {(52 – 12)/2}2  = {(52 + 12)/2}2   
                          (1.7)2 + {(72 – 12)/2}2  = {(72 + 12)/2}2   
                                        (1.9)2 + {(92 – 12)/2}2  = {(92 + 12)/2}2   
                           …………………………………….. 
For k = 9,          (3.9)2 + {(92 – 32)/2}2  = {(92 + 32)/2}2   
                          (3.11)2 + {(112 – 32)/2}2  = {(112 + 32)/2}2   
                          (3.13)2 + {(132 – 32)/2}2  = {(132 + 32)/2}2   
                                        (3.15)2 + {(152 – 32)/2}2  = {(152 + 32)/2}2   
                           ………………………………………… 
For k = 25,        (5.13)2 + {(132 – 52)/2}2  = {(132 + 52)/2}2   
                          (5.15)2 + {(152 – 52)/2}2  = {(152 + 52)/2}2   
                          (5.17)2 + {(172 – 52)/2}2  = {(172 + 52)/2}2   
                                        (5.19)2 + {(192 – 52)/2}2  = {(192 + 52)/2}2   
                           ………………………………………... 
2nd kind. 
 
For k = 2,          {(52 – 32)/2}2  + (5.3)2 = {(52 + 32)/2}2    
                          {(72 – 52)/2}2  + (7.5)2 = {(72 + 52)/2}2   

                          {(92 – 72)/2}2  + (9.7)2 = {(92 + 72)/2}2   

                          {(112 – 92)/2}2  + (11.9)2 = {(112 + 92)/2}2 
                           ……………………………………….. 
For k = 8,          {(72 – 32)/2}2  + (7.3)2 = {(72 + 32)/2}2    
                          {(92 – 52)/2}2  + (9.5)2 = {(92 + 52)/2}2   

                          {(112 – 72)/2}2  + (11.7)2 = {(112 + 72)/2}2   

                          {(132 – 92)/2}2  + (13.9)2 = {(132 + 92)/2}2 
                           ………………………………………….. 
 For k = 18,        {(112 – 52)/2}2  + (11.5)2 = {(112 + 52)/2}2    
                          {(132 – 72)/2}2  + (13.7)2 = {(132 + 72)/2}2   

                        {(152 – 92)/2}2  + (15.9)2 = {(152 + 92)/2}2   
                          {(172 – 112)/2}2  + (17.11)2 = {(172 + 112)/2}2 
                   ………………………………......................... 
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Here, b2 is expressible in the form of α1
2 – β1

2 whereas b is expressible in the form of (α1
2 – β1

2) /2 where α, β both 
are odd. So by Nd operation we cannot receive a relation like b3 = α2 – β2 But for b4 by Nd operation we can always 
get a relation (b.b/2)2 = p2 – q2 where p, q both are odd.  
Hence,(any even no.)any odd no. cannot be a term of N-equation. It is under NZ-equation. 
 
So it is observed that ‘a’ produces power by Nd operation among mixed zygote expressions i.e. mixed with odd & 
even elements. 
‘b’ produces power by Nd operation among odd zygote expressions i.e. mixed with only odd elements. 
‘c’ produces power by Ns operation among mixed zygote expressions. 
Any two of these three operations or all the three are not possible to run simultaneously.  
So in N-equation only one element can raise its power beyond two. 
 
The general form of N-equation where even element (b) is in power form by continuous applications of Nd 
operations over b2 & b2,can be written as 
 
(bn)2 + (nc1cn –1a + nc3cn –3a3 + ……)2 = (cn + nc2cn –2a2 + …..)2     
Which is a composite set with common factor 2n – 1. 
 
⇒ (bn/2n – 1)2 + (d1)2 = (d2)2, where obviously, d1 & d2 are odd. 
Say, b = 2m.αp where α is odd.  
⇒ {2n(m – 1) + 1.αpn}2 + (d1)2 = (d2)2, where GCF of n(m – 1) + 1 & pn > 1so as to receive the even element in power 
form.  
 
7.  The cases where two exponents are greater than two. 
 
The N-eq. a2 + b2 = c2, a < b < c can be defined as (a0

2 – b0
2)2 + (2a0b0)2 = (a0

2 + b0
2)2, where a, b, c are N-elements 

& a0, bo are its zygote elements.  
(a0

2 – b0
2) & (a0

2 + b0
2) are the corresponding zygote expressions conjugate to each other.  

 
If the zygote elements are of positive integers, we can have the equation  
ax + by = cz where (a, b, c) is a prime set and if x > 2, y = 2 = z or, if y > 2, z = 2 = x or, if z > 2, x = 2 = y 
 
If the zygote elements are of irrational nature i.e. in the form of (p ± q√r), we have the N-eq. renamed as N-eq. of 
irrational zygote elements or simply NZ -equation. 
⇒ {(p + q√r)2 – (p – q√r)2}2 + {2(p + q√r) (p – q√r)}2 = {(p + q√r)2 + (p – q√r)2}2 
 
or, (4pq√r)2 + {2(p2 – q2r)}2 = {2(p2 + q2r)}2 
or, {p)2 – (q√r)2}2 + {2p.q√r}2 = {{p)2 + (q√r)2}2 
 
Here also like N-eq. the RH term of NZ-equation can produce even power by virtue of Ns operation in between 
mother expression & self and odd power by same Ns operation in between mother & its zygote elements. 
Similarly, corresponding LH term of NZ-eq. can produce power by virtue of Nd operation. 
 
These two Ns & Nd operation cannot run simultaneously. Hence, only one element can produce power greater than 
two. But after Nd or Ns operations, the irrational element can produce power due to presence of √r factor. Here, if x, 
y > 2 then z = 2 & so on. 
Let us write the N-eq. in power form: 
 
(α2 – β2)n + { nc1αn – 1β + nc3αn – 3β3 + …..  }2 = {αn + nc2αn – 2 β2 + …..}2         .....…(B)                                                
 
{αn – nc2αn – 2 β2 + …..}2 + { nc1αn – 1β – nc3αn – 3β3 + …….  }2 = (α2 + β2)n      ……..(C) 
 
For NZ-eq. where α is integer & β is irrational Eq.(B) can be written in two ways. 
 
(α2 – β2)n + {βf(α, β, n)}2 = {αg(α, β, n)}2 when n is odd. ……. (B1) 
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(α2 – β2)n + {αβf(α, β, n)}2 = {g(α, β, n)}2 when n is even. ……. (B2) 
 
The integer element i.e. third one cannot produce power. If the irrational element i.e. second one produces power, 
f(α, β, n) must be in the form of β2m in case of n is odd and in the form of (αβ)2m in case of n is even.  
 
Similarly Eq.(C) can be written in two ways 
 
{αg1(α, β, n)}2 + {βf1(α, β, n)}2 = (α2 + β2)n when n is odd ……(C1) 
{g1(α, β, n)}2 + {αβf1(α, β, n)}2 = (α2 + β2)n when n is even ……(C2) 
 
The integer element i.e. first one cannot produce power. If the irrational element i.e. second one produces power, 
f1(α, β, n) must be in the form of β2m in case of n is odd and in the form of (αβ)2m in case of n is even.  
 
Example in favor of Eq.(C1)  
   
for n = 3, 3α2 – β2 = βm or, βm + β2 – 3α2 = 0, where obviously, m is even & β is in the form of q√r, (q, r are odd) & 
there is no c.f. among  α, p, q.  
We have, (√3)4 + (√3)2 = 3.22 Hence, consider the equation, 
{22 – (√3)2}2 + (2.2√3)2 = {22 + (√3)2}2 i.e. 12 + (4√3)2 = 72. 
By NS operation in between 72 & 7 i.e. in between 12 + (4√3)2 & 22 + (√3)2 we get, (8√3 ± √3)2 + (2 –/+ 12)2 where 
one case is 35 + 102 = 73. 
 
Example in favor of Eq.(C2) 
 
For n = 4, we have irrational element β.4(β2 – α2). Put α = 1 & β = √2, we get4(β2 – α2) = 4 = (√2)4 = β4 
Hence, consider the equation {(√2)2 – 12}2 + (2√2)2 = {(√2)2 + 12}2  
or, 12 + (2√2)2 = 32. Apply Ns operations in between {12 + (2√2)2 } & self. 
(2√2 ± 2√2)2 + (8 –/+ 1)2 = 32.32 or, 25 + 72 = 34 or, directly from Eq-(C) we get the same result.  
On the same logic for n = 2, we get 1 + 23 = 32.  
 
As both the binomially expanded elements under Eq-(C) are sum of alternately (+) & (–), it will produce the 
relations of low value elements. But Eq-(B) will produce relations of high value elements. 
 
Let us take the example of 173 + 27 = 712. It is an example of low value elements. Here, if we proceed from 71 for 
Ns operation , by back calculation we can say,  
71 = [√{(71 + 8√2)/2}]2 + [√{(71 –  8√2)/2}]2 = p2 + q2 (say) 
Now applying Ns operation in between (p2 + q2) & self we get the relation 173 + 27 = 712. 
We can proceed from the element 17 also. 17 must be expressed in the form of  p2 – q2 where by successive Nd 
operations (3 times) on 17 we can get the same relation 173 + 27 = 712, may be nature of  p, q are different i.e. not in 
the form of p = s & q = t√u where s, t, u are integers. For integer values of s, t, u Nd operations will produce relations 
of  high value elements. 
 
From Eq.(A) we can say (p + q)3 = 17 + 8√2 & (p – q)3 = 17 – 8√2  
⇒ p = ½.[(17 + 8√2)1/3 + (17 – 8√2)1/3 & q = ½.[(17 + 8√2)1/3 – (17 – 8√2)1/3 
 
Computer generated some relations are given below. 
73 +132 = 29 
35 + 114 = 1222 
177 + 762713 = 210639282 
14143 + 22134592 = 657 
92623 + 153122832 = 1137 
438 + 962223 = 300429072 
338 + 15490342 = 156133 etc. 
All can be explained in similar ways.  
 
8.   Theory behind the formation of Beal Equation. 
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The N-equation a2 + b2 = c2 where a, c are odd elements & b is even elements can be redefined in power form as 
an + b2 = c2 where a, b, c are powerless & n = 2, 3, 4, …… 
a2 + b2 = cn where a, b, c are powerless & n = 2, 3, 4, …… 
a2 + b2n = c2 where a, b, c are powerless & n =1, 2, 3, 4, …… 
Here, one cannot be the element of N-equation. 
For NZ-equation two exponents can exceed beyond two. Exponent of one of the elements under Nd or Ns operations 
must be restricted to two. One can be element of NZ-equation. 
 
A prime or composite set of three numbers (a, b, c) where a + b = c can produce a Beal equation after choosing a 
common multiplier provided any two numbers of a, b, c are in power form greater than two  
and the powerless term must have at least one factor with power greater than 3, say b = βnγ = βn – r.βrγ where n > 3,  
n – r > 3. For the corresponding other factor α = βrγ, αp – 1 will be common multiplier to produce Beal equation where 
GCF of (p – 1) with power of a, c separately & that of p with (n – r) will be greater than 3. 
If a or b = 1, say a = 1, then for the powerless term (powerless means if β = 1, power of γ ≤ 2), say b, bn will be CM 
where GCF of n with power of c ≥ 3. It is true for a = 1 = b also. 
 
In more simplified way we can say, for any two numbers A & B ( > 1) which are prime to each other if it is found 
Am ± Bn = γα .β where α > 3, then select a number p from 4,5,6 ….. , α such that GCF of p & α, 
 (p – 1) & m, (p – 1) & n all are ≥ 3. If p exists then Beal eq. will exist with common multiplier βp – 1  
Obviously, to produce Beal equation 
m, n, α cannot be all prime. 
For m ≠ n; m, n cannot be prime. 
If α is prime; m or n cannot be prime. 
As the consecutive nos. p & (p – 1) do not have any common factor in between them, hence for any Beal equation 
Ax + By = Cz, (x, y, z) is a prime set i.e. no common factor lies among x, y, z. In between two there can be a 
common factor. This implies all the powers cannot be even. 
 
9.   Few examples for the existence of Am ± Bn = γα .β where α > 3, γ ≥ 1 
 
Any even number can be expressed as N = 2n.p where p is an odd integer & n is an integer known as degree of 
intensity of N i.e. D(N) = n. 
 
 Say, N = Am – Bn where A & B are two odd nos. ≥ 3 & prime to each other and m, n both are odd. 
⇒ N = (1 + e1)m – (1 + e2)n  
After Binomial expansion, N = e1(an odd integer) – e2(an odd integer) 
Say, e1 = 2p.o1 & e2 = 2q.o2 where o1 & o2 are odd integers. 
⇒ if p ≠ q, N = 2α.(an odd no.) where α = Min (p, q) & to create Beal eq. α > 3 
For p = q = α,  
N = 2α[(mo1 – no2) + (mc2.o1

2 – nc2.o2
2)2α + (mc3.o1

3 – nc3.o2
3).22α + …….. ] 

= 2α + λ.(an odd integer) where λmin = 1. So α > 2 
If D(mo1 – no2) ≥ 2 then α > 1. 
 
For m, n both are even, 
N = (me1 – ne2) + (mc2e1

2 – nc2e2
2) + ……… 

⇒ D(N) > Min (p, q) + 1 ⇒ to create Beal eq.  Min( p, q ) > 2 
Say m, n are combination of even & odd. 
For p = q = α, N = 2α.(an odd integer). Hence, to create B eq. α > 3 
For p ≠ q, Min(D(me1), D(ne2) > 3 
 
Say, A & B are even & for any integer values of m, n (>3), 
Say, N = (1 + aαg)m – (1 + aαh)n = aα(an even no.), after binomial expansion. 
To create Beal eq. α > 3 
Say, A is even & B is odd & m, n are any integers > 3 
 Say, N = (1 + aαg)m – (1+ 2k aαh)n = aα(an odd no), after binomial expansion. 
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To create Beal eq. α > 3 
 
For a particular acceptable value of α there can be infinite no. of sets (m, n). 
 
For a + b = c, any two number taken from each side must be in power form. Say, a & c (both > 1) are in extreme 
power form with bases a1 & c1. Then there must be a common factor among (a1 – 1), b, (c1 – 1) in the form of θk 
where θ = 1, 2, 3, 4,.…. & k > 3 [θ = 1 for γ = 1]. If not, it is to be understood that a, c are not prime to each other. 
Already there exists a common factor γ. 
 
Let consider the case N = Am + Bn where A & B are any two odd integers ( > 1) & m, n are any two integers ≥ 3 
Say, A = 1 + γα.I1 & B = 1 + γα.I2 
⇒ N = (1 + γα.I1 )m + (1 + γα.I2)n 
= 2[ 1 + (mI1 + nI2)γα + (mc2I1

2 + nc2I2
2)γ2α + …….. ] 

= 2[ 1 + γα.P] 
Now γα.P & (1 + γα.p) two consecutive nos. cannot have a common factor γα. 
⇒ N = 2(an odd no.) & D(N) = 1  
In spite of considering common factor γα result is free from γα. Hence, it’s not capable of producing Beal eq. for γ ≠ 
1 
Here the result 2(odd no.) i.e. 2.o1

p1.o2
p2…..has the limitation p1, p2, p3,…≤ 3 

(* subject to Proof) 
 
Say, A is odd & B is even. 
N = (1 + e1)m + (1 + o1)n where e1 = γα.e2 & o1 = γα.o2, obviously γ is odd.  
= 2 + (mc1.e2 + nc1.o2)γα + (mc2.e2

2 + nc2.o2
2)γ2α + …….. 

= 2 + γα.P ⇒ N does not have a c.f. γα as two consecutive odd nos. cannot have a common factor. 
Hence, it is also not capable of producing any Beal eq. for γ ≠ 1. 
 
In the above all we have discussed considering the fact that A, B are prime to each other. If there is a common factor 
in between A & B, then it is always possible to have a relation like Am ± Bn = γαβ.   
 
Conclusion 
 
Whether my proof is correct or wrong it needs to be examined by an expert number-theorist and after all it should be 
accepted by all mathematical communities. The total nos. of solutions of ax + by = cz, where (a, b, c) is a prime set & 
any two of (x, y, z) > 2 & other = 2, seems to be finite. If it is so, how many? It needs further investigations. 
 
Moreover, from N-eq. so many important things can be noticed such as: 
 
a)   if (e1

2 + o1
2)(e2

2 + o2
2) produces a relation  e3

2 + o3
2 = e4

2 + o4
2, then  

Max(e3, e4) + Max(o3, o4) = (e1 + o1)(e2 + 02) 
| Max(e3, e4) – Max(o3, o4) | = |(e1 – o1)(e2 – 02)| 
 
b)  if (a1

2 – b1
2)(a2

2 – b2
2) produces a relation  a3

2 – b3
2 = a4

2 – b4
2, then  

(a1
2 + b1

2)(a2
2 + b2

2) will produce a relation a3
2 + b4

2 = a4
2 + b3

2 
 
c)  For a N-equation a2 + b2 = c2 where a & c are odd integers, the prime numbers excepting two can be divided into 
two types. Those who belong to ‘c’ as a prime factor or alone can be said as type-2 and the rest can be said as type-1 
Obviously, type-2 prime nos. are distributed to all values of ‘k’ and remains present for a particular value of k 
uniquely i.e. k = c – Max{ 2ab, (b2 – a2)} whereas type-1 & type-2 both are belonging to ‘a’ under k = 1 as a prime 
factors or along.   
                                                                                                n  
If P2 be a prime no. of type-2, then P2

2  , n = 0, 1, 2, 3, ....; can be expressed as a2 + b2 uniquely  
All the prime numbers of type-1 & type-2 both with exponent 2n, n = 0, 1, 2, 3, ….. can be expressed as difference 
of two square quantities of two consecutive nos. uniquely i.e. {(P + 1)/2}2 – {(P – 1)/2}2. But for type-1 prime 
number it is (even)2 – (odd)2 & for type-2 prime no. it is (odd)2 – (even)2. 
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Any composite no. whose all prime factors are of type-2 can be expressed as (e)2 + (o)2 & (o)2 – (e)2 but not 
uniquely. 
Any composite no. whose at least one prime factor is of type-1 can be expressed as (e)2 – (0)2 but not uniquely. It 
cannot be expressed as (e)2 + (o)2 
 
When N is found to be prime by digital analysis we can establish the following fact. 
 
Digit of unit  
Place of N 

Digit of 10th  
Place of N 

Remarks 

1 or 9 even ‘N’ is of type-2 
3 or 7 odd ‘N’ is of type-2 
1 or 9 odd ‘N’ is of type-1 
3 or 7 even ‘N’ is of type-1 
⇒ D(P1 – 1) = 1& D(P2 – 1) >1 or, (P1 + 1)/2 = even & (P2 + 1)/2 = odd 
* For any even number N = 2n.p where p is an odd integer, n is said to be degree of intensity & denoted by D. 
 
d)  With the help of N-equation it has been possible to analyze all the important aspects of Beal-equation. It also 
covers the proof of Fermat’s Last Theorem i.e. an + bn = cn where n is positive integer > 2, does not have any 
solution. Now we can put our attention over the fact an + bn = cn + dn. For n = 2 all the relations are made available 
from the right hand element ( c ) of N-equation. Any composite number of c having at least two prime factors can 
produce such type of relations. But what happens when n > 2? It will be worthy to mention here that for n = 3, the 
minimum number having the property a3 + b3 = c3 + d3, was first noticed by great mathematician Sir Srinivasa 
Ramanujan i.e. 13 + 123 = 93 + 103 = 1729 (Ramanujan number). But is there any relations among a, b, c, d or can all 
the relations be arranged in a systematic manner like N-eq? 
From N or NZ equation one thing is clearly understood that a2n + b2n = c2n + d2n, for n > 1 does not have any 
solution. Because this type of relation is obtained  only by Ns or Nd operation where two equal powers more than 
two is absurd.  
So there lies ample of scopes for further development of N-eq. particularly in the field of prime numbers. 
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